loading...
وبلاگ ریاضی دانان دبیرستانی
ثبت نام در سایت ریاضیدانان دبیرستانی

کسانی که می خواهند در از سایت ثبت نام بکنند می توانند از طریق لینک زیر ثبت نام بکنند .

و بعد از ثبت نام یک ایمیل با موضوع سایت ریاضیدانان دبیرستانی به مدیریت سایت بفرستند .

و در آن مقطع تحصیلی و نام مدرسه و نام شهر خود را بنویسند .

ایمیل مدیریت : alirezaseyedalinezhad@yahoo.com

لینک ثبت نام

کسب درآمد
کسب درآمد
آخرین ارسال های انجمن
sina-valfajr بازدید : 2241 چهارشنبه 16 اسفند 1391 نظرات (0)

تعریف تابع

در ریاضیات تابع عملکردی است که برای هر ورودی داده شده یک خروجی منحصر بفرد تولید می‌کند معکوس این مطلب را در تعریف تابع بکار نمی‌برند. یعنی در واقع یک تابع می‌تواند برای چند ورودی متمایز خروجیهای یکسان را نیز تولید کند. برای مثال با فرض y=x2 با ورودیهای 5- و 5 خروجی یکسان 25 را خواهیم داشت. در بیان ریاضی تابع رابطه‌ای است که در آن عنصر اول به عنوان ورودی و عنصر دوم به عنوان خروجی تابع جفت شده است.

به عنوان مثال تابع f(x)=x2 بیان می‌کند که ارزش تابع برابر است با مربع هر عددی مانند x

img/daneshnameh_up/b/b5/function-pic2.jpg





در واقع در ریاضیات رابطه را مجموعه جفتهای مراتب معرفی می‌کنند. با این شرط که هرگاه دو زوج با مولفه‌های اول یکسان در این رابطه موجود باشند آنگاه مولفه‌های دوم آنها نیز یکسان باشد. همچنین در این تعریف خروجی تابع را به عنوان مقدار تابع در آن نقطه می‌نامند. مفهوم تابع اساسی اکثر شاخه‌های ریاضی و علوم محاسباتی می‌باشد. همچنین در حالت کلی لزومی ندارد که ما بتوانیم فرم صریح یک تابع را به صورت جبری آلوگرافیکی و یا هر صورت دیگر نشان دهیم.

فقط کافیست این مطلب را بدانیم که برای هر ورودی تنها یک خروجی ایجاد می‌شود در چنین حالتی تابع را می‌توان به عنوان یک جعبه سیاه در نظر گرفت که برای هر ورودی یک خروجی تولید می‌کند. همچنین لزومی ندارد که ورودی یک تابع ، عدد و یا مجموعه باشد. یعنی ورودی تابع را می‌توان هر چیزی دلخواه در نظر گرفت البته با توجه به تعریف تابع و این مطلبی است که ریاضیدانان در همه جا از آن بهره می‌برند.

تاریخچه تابع

نظریه مدرن توابع ریاضی بوسیله ریاضیدان بزرگ لایب نیتر مطرح شد همچنین نمایش تابع بوسیله نمادهای (y=f(x توسط لئونارد اویلر در قرن 18 اختراع گردید، ولی نظریه ابتدایی توابع به عنوان عملکرهایی که برای هر ورودی یک خروجی تولید کند توسط جوزف فوریه بیان شد. برای مثال در آن زمان فوریه ثابت کرد که هر تابع ریاضی سری فوریه دارد.

چیزی که ریاضیدانان ما قبل اوبه چنین موردی دست نیافته بودند، البته موضوع مهمی که قابل ذکر است آنست که نظریه توابع تا قبل از بوجود آمدن نظریه مجموعه ها در قرن 19 پایه و اساس محکمی نداشت. بیان یک تابع اغلب برای مبتدی‌ها با کمی ابهام همراه است، مثلا برای توابع کلمه x را به عنوان ورودی و y را به عنوان خروجی در نظر می‌گیرند ولی در بعضی جاها y,x را عوض می‌کنند.

ورودی تابع

ورودی یک تابع را اغلب بوسیله x نمایش می‌دهند. ولی زمانی که ورودی تابع اعداد صحیح باشد. آنرا با x اگر زمان باشد آنرا با t ، و اگر عدد مختلط باشد آنرا با z نمایش می‌دهند. البته اینها مباحثی هستند که ریاضیدانان برای فهم اینکه تابع بر چه نوع اشیایی اثر می‌کند بکار می‌رود. واژه قدیمی آرگومان قبلا به جای ورودی بکار می‌رفت. همچنین خروجی یک تابع را اغلب با y نمایش می‌دهند در بیشتر موارد به جای f(x) , y گفته می‌شود. به جای خروجی تابع نیز کلمه مقدار تابع بکار می‌رود. خروجی تابع اغلب با y نمایش داده می‌شود. ولی به عنوان مثال زمانی که ورودی تابع اعداد مختلط باشد، خروجی آنرا با "W" نمایش می‌دهیم. (W = f(z

تعریف روی مجموعه‌ها

یک تابع رابطه‌ای منحصر به فرد است که یک عضو از مجموعه‌ای را با اعضای مجموعه‌ای دیگر مرتبط می‌کند. تمام روابط موجود بین دو مجموعه نمی‌تواند یک تابع باشد برای روشن شدن موضوع ، مثالهایی در زیر ذکر می‌کنیم:

img/daneshnameh_up/a/af/122.jpg




این رابطه یک تابع نیست چون در آن عنصر 3، با دو عنصر ارتباط دارد. که این با تعریف تابع متناقص است چون برای یک عنصر از مجموعه، دو عنصر در مجموعه موجود است


img/daneshnameh_up/c/c5/23.gif


توابع زوج و فرد

فرض کنید f تابعی با دامنه با شد و برای هر آنگاه باشد(در اصطلاح دامنه تابع f متقارن باشد). در این صورت:

  • تابع f را زوج می گوییم هرگاه:
  • تابع f را فرد می گوییم هرگاه:

اگر هیچ یک از شرایط فوق برقرار نباشد تابع را نه زوج و نه فرد می گوییم.

  • توجه کنید که شرط اولیه اینکه تابعی بتواند زوج یا فرد باشد این است که دامنه اش متقارن باشد یعنی:


و اگر شرط فوق برقرار نباشد در مورد زوج یا فرد بودن تابع بحث نمی شود.(چرا؟)
به عنوان مثال تابع تابعی است نه زوج و نه فرد چرا که دامنه اش برابر است با که متقارن
نمی باشد چون 1- عضو دامنه بوده ولی 1 عضو دامنه نمی باشد و شرط اولیه برای زوج یا فرد بودن تابع برقرار نمی باشد.

به عنوان مثال تابع تابعی زوج است چرا که اولا وامنه اش مجموعه اعداد حقیقی بوده پس متقارن است و همچنین داریم:


و همچنین تابع تابعی فرد است چرا که دامنه اش مجموعه اعداد حقیقی بوده و متقارن است و همچنین:


تابع هم تابعی نه زوج و نه فرد است زیرا:(البته شرط اولیه یعنی متقارن بودن دامنه برقرار است) که در هیچ یک از شراط تابع زوج یا فرد صدق نمی کند.

بررسی زوج و فرد بودن تابع از روی نمودار تابع:


  • از نظر هندسی نمودار تابع زوج نسبت به محور y ها متقارن است.

برهان: می دانیم در تقارن یک نقطه نسبت به محور y ها مولفه y ثابت و مولفه x قرینه می شود پس زمانی نسبت به محور y ها متقارن است که با تبدیل x به x- تابع تغییری نکند. پس در چنین تابعی داریم: که این همان تعریف تابع زوج است.
به عنوان مثال نمودار تابعی که در بالا زوج بودنش را نشان دادیم به این صورت است:

تصویر


مشاهده می کنید این تابع نسبت به محور Y ها متقارن است.

  • از نظر هندسی نمودار تابع فرد نسبت به مبدا مختصات متقارن است.

برهان: می دانیم در تقارن یک نقطه نسبت به مبدا همه مولفه ها قرینه می شوند. پس تابع هنگامی نسبت به مبدا متقارن است که با تبدیل x به x- تابع از (‌f(x به (‌f(x- تغییر کند. پس در چنین تابعی داریم: که این همان تعریف تابع فرد است.
به عنوان مثال نمودار تابعی که در بالا فرد بودنش را بررسی کردیم به این صورت است:

تصویر


مشاهده می شود این تابع نسبت به مبدا متقارن است.
تابعی که هیچ یک از این ویژگی ها را نداشته باشد نه زوج و نه فرد است. به عنوان مثال نمودار های زیر نمونه ای از نمودار های توابع نه زوج و نه فرد است:

تصویرتصویر


از معروف ترین توابع نه زوج و نه فرد می توان به تابع هموگرافیک و تابع لگاریتم اشاره کرد.

  • حال ممکن است این سوال پیش بیاید که آیا تابعی وجود دارد که هم زوج و هم فرد باشد؟

بررسی می کنیم:

اگر چنین تابعی موجود باشد خاصیت زوج بودن و فرد بودن را با هم دارد. فرض کنید تابع با دامنه دارای چنین خاصیتی باشد و
داریم:



حال با جمع کردن طرفین:


پس تابع (محور Xها) تنها تابعی است که هم زوج و هم فرد است و نمودار آن به این صورت است:

تصویر


مشاهده می کنید که نمودار این تابع هم نسبت به مبدا مختصات و هم نسبت به محور Y ها متقارن است پس هم زوج و هم فرد است.

  • چند خاصیت از توابع زوج و فرد:


  • اگر f و g دو تابع زوج باشند آنگاه ترکیبشان یعنی fog(یا gof) هم زوج است.
  • اگر f و g دو تابع فرد باشند آنگاه ترکیبشان یعنی fog(یا gof) هم تابعی فرد است.

ترکیب دو تابع که یکی زوج و دیگری فرد باشد همواره تابعی زوج است.

گر f و g دو تابع فرد باشند آنگاه تابع تابعی فرد و سایر حالات یعنی: توابعی زوج هستند.

اگر f تابعی زوج و g تابعی فرد باشد آنگاه تابعی نه زوج و نه فرد بوده و توابع توابعی فرد می باشند.

ارسال نظر برای این مطلب

کد امنیتی رفرش
سایت کانون قلم چی
...
درباره ما
Profile Pic
اینجانب آقای علیرضا سید علی نژاد جهت ارتباط با ریاضی دانان دبیرستانی کشور این وبلاگ را ساخته ایم .
اطلاعات کاربری
  • فراموشی رمز عبور؟
  • نظرسنجی
    آیا درس ریاضیات را دوست دارید ؟
    ...
    ...
    آمار سایت
  • کل مطالب : 84
  • کل نظرات : 34
  • افراد آنلاین : 7
  • تعداد اعضا : 314
  • آی پی امروز : 38
  • آی پی دیروز : 10
  • بازدید امروز : 41
  • باردید دیروز : 29
  • گوگل امروز : 0
  • گوگل دیروز : 0
  • بازدید هفته : 70
  • بازدید ماه : 134
  • بازدید سال : 7,446
  • بازدید کلی : 224,456
  • کدهای اختصاصی

    ابزار وبلاگ

    Flag Counter

    Top Blog
    وبلاگ برتر در تاپ بلاگر

    خرید شارژ